CHROM, 8531

Note

Separation of 5α-pregnan-3,20-dione and progesterone on Sephadex LH-20

V. DANIEL CASTRACANE, SHEIKH SAIF UR RAHMAN and R. B. BILLIAR

Department of Reproductive Biology, Case Western Reserve University, Cleveland. Ohio 44106 (U.S.A.)

(First received April 22nd, 1975; revised manuscript received July 3rd, 1975)

Previous methods for the measurement of 5α -pregnan-3,20-dione (5α -DHP) have relied on gas-liquid chromatography following an initial separation by thin-layer chromatography¹⁻³. More recent methods for the assay of 5α -DHP, including the competitive protein binding method developed in this laboratory⁴ as well as the use of radioimmunoassays⁵ require a method of separation of 5α -DHP from other steroids which cross-react in the assay but also does not invalidate the assay due to blank values. Studies in this laboratory indicated a prohibitive blank value with the use of thin-layer chromatographic separations of 5α -DHP. Therefore, separation on Sephadex LH-20 (Pharmacia, Piscataway, N.J., U.S.A.) was developed because of the minimal interference in blank values with radioligand assays. This method represents a modification of the procedure of Labhsetwar and Watson⁶ for the purification of progesterone on Sephadex LH-20.

EXPERIMENTAL

Sephadex LH-20 (500 mg) was swelled overnight in excess 90% aqueous methanol in individual covered vessels (liquid scintillation vials). A 5-ml disposable pipet (Corning, No. 7079) was used as a column with glass beads as support. The entire Sephadex slurry was added to the column and allowed to settle. This resulted in a column height of 7.5 cm. The column was then washed with 15 ml of 90% methanol, followed by 15 ml of the eluent (isooctane saturated with 90% methanol). Samples were then applied to the column in 0.2 ml of the eluent followed by a second application of the rinsed vessel. Steroids were eluted with further additions of the eluent which was collected in 1-ml fractions. Separations were done at room temperature and atmospheric pressure. Tritiated or ¹⁴C-labelled steroids were added to the column either individually or two at a time for dual-labelled separation and included [³H]-5α-DHP, [³H]- or [¹⁴C]-progesterone, [¹⁴C]-17α-hydroxyprogesterone (17α-OHP), [³H]-21-hydroxypregn-4-ene-3,20-dione (DOC) or [³H]-pregnenolone.

RESULTS

Characteristic patterns of recovery for steroids were identical for either single-labelled or dual-labelled steroid separations. Fractions of 1 ml were collected and counted in a liquid scintillation spectrometer. 5α -DHP was recovered in fractions 4

TABLE I ELUTION PATTERN OF 5c-DHP AND PROGESTERONE FROM SEPHADEX LH-20 COLUMNS

Each fraction	was i	mi;	recovery	is	the	mean	\pm S.E.M.
---------------	-------	-----	----------	----	-----	------	--------------

5a-Pregnan-3. (n = 14)	,20-dione	Progesterone (n = 4)			
Fraction no.	raction no Recovery		Fraction vo. o. Recovery		
[1.8 ± 0.3	10	6.6 = 0.9		
;	0.6 ± 0.1	11	34.4 - 0.9		
}	1.7 ± 0.3	12	35.6 - 2.2		
Ļ	47.5 ± 2.4	13	9.5 - 1.2		
5	28.4 ± 2.5				
í	4.7 ± 0.6				
ī	1.5 ± 0.1				
3	0.4 ± 0.1				

and 5 with a mean recovery of 75.9 \pm 3.8% (n = 14) for the 2 ml collected. Progesterone was recovered in fractions 11 and 12 with a 70% recovery (n = 4) with no appreciable amounts of progesterone recovered before 10 ml of eluent. Percentage recoveries for 5α-DHP and progesterone are presented in Table I. DOC, pregnenolone and 17α -OHP were not eluted from the column when as much as 15 ml of eluate was used. Both 5α - and 5β -DHP are eluted from the LH-20 column in the same fraction, with the greatest recovery of each in the fifth 1-ml fraction. Because of the minimal binding of 5\beta-DHP with the progesterone binding protein of pregnant guinea pigs^{7,8}, and the expected low levels in biological samples, no further effort was made to separate these two isomers.

Sephadex LH-20 column chromatography, using 90% aqueous methanol as the stationary phase and isooctane (saturated with 90% methanol) as the mobile phase, has been developed in this laboratory for the separation of 5a-DHP and progesterone in serum extracts. This method is rapid, economical and gives a low blank value in the competitive protein binding assay of 5\alpha-DHP.

ACKNOWLEDGEMENTS

This work was supported by U.S.P.H.S. Program Project HD-07640 and NIH Training Grant HD-00024 (V.D.C.). The technical assistance of Anna Jaung and Gertrude Malysz is greatly appreciated.

REFERENCES

- 1 S. Ichikawa, H. Morioka and T. Sawada, Endocrinology, 88 (1971) 372.
- 2 J. A. Collins and D. M. Jerkes, Amer. J. Obstet. Gynecol., 118 (1974) 179.
- 3 F. V. Nowak and H. J. Karovalas, Endocrinology, 94 (1974) 994.
- 4 S. Rahman, R. B. Billiar and B. Little, Ginecol. Invest., 6 (1975) 22.
- 5 L. Milewich, C. Gomez-Sanchez, J. D. Madden and P. C. MacDonald, Ginecol. Invest., 6 (1975)
- 6 A. P. Labhsetwar and D. J. Watson, Biol. Reprod., 10 (1974) 103.
- 7 S. Y. Tan and B. E. P. Murphy, Endocrinology, 94 (1974) 122.
- 8 M.-F. Pichon and E. Milgrom, Steroids. 21 (1973) 335.